Reciprocal cyclotomic polynomials

نویسنده

  • Pieter Moree
چکیده

Let Ψn(x) be the monic polynomial having precisely all non-primitive nth roots of unity as its simple zeros. One has Ψn(x) = (x n − 1)/Φn(x), with Φn(x) the nth cyclotomic polynomial. The coefficients of Ψn(x) are integers that like the coefficients of Φn(x) tend to be surprisingly small in absolute value, e.g. for n < 561 all coefficients of Ψn(x) are ≤ 1 in absolute value. We establish various properties of the coefficients of Ψn(x).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the factorization of polynomials with small Euclideannorm

Throughout this paper, we refer to the non-cyclotomic part of a polynomial f(x) 2 Z[x] as f(x) with its cyclotomic factors removed. More speci cally, if g1(x); : : : ; gr(x) are non-cyclotomic irreducible polynomials in Z[x] and gr+1(x); : : : ; gs(x) are cyclotomic polynomials such that f(x) = g1(x) gr(x) gr+1(x) gs(x), then g1(x) gr(x) is the non-cyclotomic part of f(x). We refer to a polynom...

متن کامل

Generalized reciprocals, factors of Dickson polynomials and generalized cyclotomic polynomials over finite fields

We give new descriptions of the factors of Dickson polynomials over finite fields in terms of cyclotomic factors. To do this generalized reciprocal polynomials are introduced and characterized. We also study the factorization of generalized cyclotomic polynomials and their relationship to the factorization of Dickson polynomials.

متن کامل

Single polynomials that correspond to pairs of cyclotomic polynomials with interlacing zeros

We give a complete classification of all pairs of cyclotomic polynomials whose zeros interlace on the unit circle, making explicit a result essentially contained in work of Beukers and Heckman. We show that each such pair corresponds to a single polynomial from a certain special class of integer polynomials, the 2-reciprocal discbionic polynomials. We also show that each such pair also correspo...

متن کامل

Galois theory of Salem polynomials

Let f(x) 2 Z[x] be a monic irreducible reciprocal polynomial of degree 2d with roots r1, 1=r1, r2, 1=r2, . . . , rd, 1=rd. The corresponding trace polynomial g(x) of degree d is the polynomial whose roots are r1 +1=r1, . . . , rd +1=rd. If the Galois groups of f and g are Gf and Gg respectively, then Gg = Gf=N , where N is isomorphic to a subgroup of Cd 2 . In a naive sense, the generic case is...

متن کامل

Flat Cyclotomic Polynomials of Order Four and Higher

In this article we prove a result about sets of coefficients of cyclotomic polynomials. We then give corollaries related to flat cyclotomic polynomials and establish the first known infinite family of flat cyclotomic polynomials of order four. We end with some questions related to flat cyclotomic polynomials of order four and five.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008